Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina.
نویسندگان
چکیده
Neurons and glial cells differentiate from common precursors. Whereas the gene glial cells missing (gcm) determines the glial fate in Drosophila, current data about the expression patterns suggest that, in mammals, gcm homologues are unlikely to regulate gliogenesis. Here, we found that, in mouse retina, the bHLH gene Hes5 was specifically expressed by differentiating Müller glial cells and that misexpression of Hes5 with recombinant retrovirus significantly increased the population of glial cells at the expense of neurons. Conversely, Hes5-deficient retina showed 30-40% decrease of Müller glial cell number without affecting cell survival. These results indicate that Hes5 modulates glial cell fate specification in mouse retina.
منابع مشابه
Requirement of multiple basic helix-loop-helix genes for retinal neuronal subtype specification.
Retinal precursor cells give rise to six types of neurons and one type of glial cell during development, and this process is controlled by multiple basic helix-loop-helix (bHLH) genes. However, the precise mechanism for specification of retinal neuronal subtypes, particularly horizontal neurons and photoreceptors, remains to be determined. Here, we examined retinas with three different combinat...
متن کاملHes genes and neurogenin regulate non-neural versus neural fate specification in the dorsal telencephalic midline.
The choroid plexus in the brain is unique because it is a non-neural secretory tissue. It secretes the cerebrospinal fluid and functions as a blood-brain barrier, but the precise mechanism of specification of this non-neural tissue has not yet been determined. Using mouse embryos and lineage-tracing analysis, we found that the prospective choroid plexus region initially gives rise to Cajal-Retz...
متن کاملPtf1a determines horizontal and amacrine cell fates during mouse retinal development.
The vertebrate neural retina comprises six classes of neurons and one class of glial cells, all derived from a population of multipotent progenitors. There is little information on the molecular mechanisms governing the specification of cell type identity from multipotent progenitors in the developing retina. We report that Ptf1a, a basic-helix-loop-helix (bHLH) transcription factor, is transie...
متن کاملCharacterization and function of the bHLH-O protein XHes2: insight into the mechanisms controlling retinal cell fate decision.
Neurons and glial cells differentiate from common multipotent precursors in the vertebrate retina. We have identified a novel member of the hairy/Enhancer of split [E(spl)] gene family in Xenopus, XHes2, as a regulator to bias retinal precursor cells towards a glial fate. XHes2 expression is predominantly restricted to sensory organ territories, including the retina. Using in vivo lipofection i...
متن کاملHes1 and Hes5 regulate vascular remodeling and arterial specification of endothelial cells in brain vascular development
The vascular system is the first organ to form in the developing mammalian embryo. The Notch signaling pathway is an evolutionarily conserved signaling mechanism essential for proper embryonic development in almost all vertebrate organs. The analysis of targeted mouse mutants has demonstrated essential roles of the Notch signaling pathway in embryonic vascular development. However, Notch signal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 127 12 شماره
صفحات -
تاریخ انتشار 2000